
hls4ml enabling  
real-time deep learning in particle physics

Jennifer Ngadiuba (Fermilab) 
on behalf of the hls4ml team 

CPAD Instrumentation Frontier Workshop 
Stony Brook University, March 18-22, 2021



hls4ml @ the LHC
•hls4ml is a library for automatic translation of deep learning models to FPGA 

firmware for inference with ultra low latency 

•First target applications:  
hardware trigger of LHC experiments and detector front-end electronics
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A 2-tier event filter reduces data rates by  4̴ orders of magnitude

J. Krupa’s talk

https://indico.fnal.gov/event/46746/contributions/210996/
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•hls4ml is a library for automatic translation of deep learning models to FPGA 

firmware for inference with ultra low latency 

•First target applications:  
hardware trigger of LHC experiments and detector front-end electronics
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J. Krupa’s talk: accelerate DL using co-processors (GPUs or FPGAs)

https://indico.fnal.gov/event/46746/contributions/210996/
https://indico.fnal.gov/event/46746/contributions/210996/


hls4ml @ the LHC
•hls4ml is a library for automatic translation of deep learning models to FPGA 

firmware for inference with ultra low latency 

•First target applications:  
hardware trigger of LHC experiments and detector front-end electronics
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THIS TALK! Limited resources and strict latency constraints

https://indico.fnal.gov/event/46746/contributions/210996/
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Bring DL to FPGA for L1 trigger with

2 Building neural networks with hls4ml

In this section we give an overview of the basic task of translating a given neural network model into
a firmware implementation using HLS. We then pick a specific use-case to study, though the study
will be discussed in a way that is meant to be applicable for a broad class of problems. We conclude
this section by discussing how to create an e�cient and optimal firmware implementation of a neural
network in terms of not only performance but also resource usage and latency.

2.1 hls4ml concept

Our basic task is to translate a trained neural network by taking a model architecture, weights, and
biases and implementing them in HLS in an automated fashion. This automated procedure is the task
of the software/firmware package, hls4ml. A schematic of a typical workflow is illustrated in Fig. 1.

�����������
�����

������
���������"�

#������

$

� ��������� ������
�����������

�� �����������

�����
�������

�����
���!������

��������������������

� ���������"����
������

�����


� ���	���
����"����"������"

hls  4  ml

hls4ml

HLS  4  ML

Figure 1: A typical workflow to translate a model into a firmware implementation using hls4ml.

The part of the workflow that is illustrated in red indicates the usual software workflow required
to design a neural network for a specific task. This usual machine learning workflow, with tools such
as Keras and PyTorch, involves a training step and possible compression steps (more discussion
below in Sec. 2.3) before settling on a final model. The blue section of the workflow is the task of
hls4ml which translates a model into an HLS project that produces a firmware block. This automated
tool has a number of configurable parameters which can help the user customize the network translation
for their application.

The time to perform the hls4ml translation is much shorter (minutes to hours) than a custom
design of a neural network and can be used to rapidly prototype machine learning algorithms without
dedicated engineering support. For physicists, this makes designing physics algorithms for the trigger
or DAQ significantly more accessible and e�cient, thus allowing the "time to physics" to be greatly
reduced.
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high level synthesis for machine learning

https://fastmachinelearning.org/hls4ml/

https://fastmachinelearning.org/hls4ml/
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Bring DL to FPGA for L1 trigger with

high level synthesis for machine learning

•User-friendly automated tool 
•Easy to tune the inference performance for your specific application: 

precision, resource vs latency/throughput tradeoff 

•Can be used as API 
•Includes several debugging utilities 

•Most common DL layers and  
activation functions supported



hls4ml: recent developments
•Since CPAD19 but the library has been significantly expanded! 

•Quantization-aware training and pruning 

- Google QKeras [arxiv.2006.10159] 

- PyTorch Brevitas [arxiv.2102.11289] 

•Convolutional neural networks [arxiv.2101.05108] 

•Custom architectures as graph neural networks: 

- GarNet/GravNet for calorimeter reconstruction [arXiv: 2008.03601] 

- Interaction networks for tracking [arxiv.2012.01563] 

•Workflow for DL-dedicated ASICs [arxiv.2103.05579] 

•Support for other vendors: Intel and Mentor HLS
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THIS TALK!

THIS TALK!

coming soon

coming soon

J. Hirschauer talk

https://agenda.hep.wisc.edu/event/1391/contributions/6994/
https://arxiv.org/abs/2006.10159
https://arxiv.org/abs/2102.11289
https://arxiv.org/abs/2101.05108
https://arxiv.org/abs/2008.03601
https://arxiv.org/abs/2012.01563
https://arxiv.org/abs/2103.05579
https://indico.fnal.gov/event/46746/contributions/210450/
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Neural network inference on FPGA
Neural network inference  

=  
matrix multiplication

Efficient implementation on FPGA uses 
DIGITAL SIGNAL PROCESSORS  

There are about 5–10k DSPs in 
modern FPGAs!

•DSPs are the most precious resource when mapping a NN into FPGA! 

•Usage can be controlled in hls4ml by tuning how much to parallelize 

→ this affects the latency and it’s a trade off that depends on the application



Efficient NN design: quantization

•Post-training quantization on FPGA allows for 
large area reduction but severe model 
performance drop for too few bits
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Figure 11: DSP usage in the pruned 3-layer model as a function of the network precision. The various
curves illustrate resource usage for di�erent resource usage factors.

Figure 12: FF and LUT usage in the pruned 3-layer model as a function of the network precision. The
various curves illustrate resource usage for di�erent resource usage factors.

corresponding to the four layers of neuron values that must be computed, with each increment in reuse
factor. This is in line with expectations from Eq. 2.4 where additional reuse of multipliers in a given
layer calculation incurs added latency. In the right plot of Fig. 13, the initiation interval is shown for
di�erent reuse factors. By design, the initiation interval and the reuse factor match as a new input can
be introduced to the algorithm only when all multiplications for a given DSP multiplier are completed.
At very low network precision, the HLS synthesis initiation interval is smaller than the reuse factor.
This is because multiplications are no longer implemented in DSPs but through FFs and LUTs.
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Efficient NN design: compression
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Fully parallelized  
(max DSP use)

compression
Number of DSPs available

•Neural Network compression is a widespread technique to reduce the size, energy 
consumption, and overtraining of deep neural networks 

•Several approaches in literature [arxiv.1510.00149, arxiv.1712.01312, arxiv.1405.3866, arxiv.1602.07576, 
doi:10.1145/1150402.1150464] 

eg, tensorflow sparsity toolkit 
iteratively remove low magnitude 
weights, starting with 0 sparsity, 
smoothly increasing up to the set 
target as training proceeds

https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1712.01312
https://arxiv.org/abs/1405.3866
https://arxiv.org/abs/1602.07576
https://dl.acm.org/citation.cfm?doid=1150402.1150464
https://blog.tensorflow.org/2019/05/tf-model-optimization-toolkit-pruning-API.html


Efficient NN design with QKeras

•QKeras is a library developed and maintained by 
Google to train models with quantization in the 
training 

•Can achieve good performance with very few bits 

•We’ve recently added support for QKeras-trained 
models to hls4ml [arxiv.2006.10159] 

- the number of bits used in training is also used in 
inference 

- automatic heterogenous layer-by-layer quantization 
also possible
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https://arxiv.org/abs/2006.10159


•Brand new implementation based on streaming hls::stream<T> 

- collect data from input pixels until we can compute one output (FIFOs) 

- compute the value of output pixel with a single call to matrix-vector multiplication 

- can reuse existing matrix-vector multiplication used for fully connected layers

Fast convolutional neural networks
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arxiv.2101.05108

https://arxiv.org/abs/2101.05108


Fast convolutional neural networks
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Evaluate performance on  
street-view house numbers 
dataset (32x32x3)

no accuracy loss 
down to 4 bits

heterogeneously 
quantized model 
through bayesian 
optimization

arxiv.2101.05108

https://arxiv.org/abs/2101.05108


Fast convolutional neural networks
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no accuracy loss 
down to 4 bits for 
Q/QP models

no accuracy loss 
down to 4 bits for 
Q/QP models

Max parallelization, i.e. reuse factor = 1 arxiv.2101.05108

https://arxiv.org/abs/2101.05108


Fast convolutional neural networks
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̴ 5 μs inference time!

Max parallelization
arxiv.2101.05108

https://arxiv.org/abs/2101.05108


hls4ml for triggering @ 40 MHz
•hls4ml enabled developments of new trigger algorithms with large gain for physics! 

- replace standard cut-based algorithms
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CMS Phase-2 L1 trigger  
upgrade TDR

NN VBF H→bb

https://cds.cern.ch/record/2714892/files/CMS-TDR-021.pdf


hls4ml for triggering @ 40 MHz
•hls4ml enabled developments of new trigger algorithms with large gain for physics! 

- replace standard cut-based algorithms 

- improve physics objects reconstruction  
(muons, taus, jets)
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36 INPUT FEATURES: 
ɸ,θ of track segments in muon stations 

track segment quality 
track segment curvature 

⬇ 

3 HIDDEN LAYERS (30x25x20) 
⬇ 

1 OUTPUT: muon pT CMS Phase-2 L1 trigger  
upgrade TDR

https://cds.cern.ch/record/2714892/files/CMS-TDR-021.pdf


hls4ml for triggering @ 40 MHz
•hls4ml enabled developments of new trigger algorithms with large gain for physics! 

- replace standard cut-based algorithms 

- improve physics objects reconstruction  
(muons, taus, jets) 

- develop new strategies like anomaly detection  
with autoencoders for signal-agnostic triggering
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21 inputs: pT/η/Φ of 4 e/𝛾, 4 μ, 10 jets, and MET  
→ input 19x3 input image

K. Govorkova @ Fast Machine Learning workshop 20

300 ns latency 
30% DSPs 
10% FFs 

30% LUTs

with no pruning/quantization!

https://indico.cern.ch/event/924283/contributions/4105192/


hls4ml for triggering @ 40 MHz
•hls4ml enabled developments of new trigger algorithms with large gain for physics! 

- replace standard cut-based algorithms 

- improve physics objects reconstruction  
(muons, taus, jets) 

- develop new strategies like anomaly detection  
with autoencoders for signal-agnostic triggering 

•Allows also for integration of custom 
architectures like graph NNs to 
achieve ultra-low inference latency 

- calorimeter clusters classification 
[CTD 2020] 

- charged particles track  
reconstruction [NeurIPS 2020]

19

Frontiers in Big Data 3 (2021) 44

https://indico.cern.ch/event/831165/contributions/3758961/
https://arxiv.org/abs/2012.01563
https://www.frontiersin.org/articles/10.3389/fdata.2020.598927/full


Summary
•hls4ml enables automatic translation of modern deep learning architectures to 

synthesizable FPGA firmware and more 

- today presented most recent developments 

•Presented applications for the hardware trigger at LHC experiments but many others 
ongoing beyond LHC 

- eg, accelerator controls → see C. Herwig talk 

- other cases being identified with common challenges (eg., large scale LArTPC 
experiments or gravitational waves detection) 

•The library is also expanding beyond FPGAs 

- see J. Hirschauer talk on the application of hls4ml to achieve DL-dedicated ASICs design 
for CMS high-granularity calorimeter (and our recent paper arxiv.2103.05579) 

•Very active developers team… stay tuned for new features and applications!
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https://indico.fnal.gov/event/46746/contributions/210802/
https://indico.fnal.gov/event/46746/contributions/210450/
https://arxiv.org/abs/2103.05579
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high level synthesis for machine learning

For more info: 

https://fastmachinelearning.org/hls4ml/ 

Fast inference of deep neural networks in FPGAs for particle physics [JINST 13 P07027 (2018)] 
Fast inference of Boosted Decision Trees in FPGAs for particle physics [JINST 15 P05026 (2020)] 

Compressing deep neural networks on FPGAs to binary and  
ternary precision with HLS4ML [2020 Mach. Learn.: Sci. Technol] 

Automatic deep heterogeneous quantization of Deep Neural Networks for ultra low-area, low-
latency inference on the edge at particle colliders [arxiv.2006.10159] 

Distance-Weighted Graph Neural Networks on FPGAs for Real-Time  
Particle Reconstruction in High Energy Physics [arxiv.2008.03601] 

Fast convolutional neural networks on FPGAs with hls4ml [arxiv.2101.05108] 
Accelerated Charged Particle Tracking with Graph Neural Networks on FPGAs [arxiv.2012.01563] 

hls4ml: An Open-Source Codesign Workflow to Empower Scientific Low-Power Machine 
Learning Devices [arxiv.2103.05579]

Thank you!

https://fastmachinelearning.org/hls4ml/
https://iopscience.iop.org/article/10.1088/1748-0221/13/07/P07027
http://www.apple.com/uk
http://www.apple.com/uk
https://arxiv.org/abs/2006.10159
https://arxiv.org/abs/2008.03601
https://arxiv.org/abs/2101.05108
https://arxiv.org/abs/2012.01563
https://arxiv.org/abs/2103.05579

